Effects of a six-month spaceflight on bone density and bone microstructure: A clinical microCT perspective

Dr. Martin Stauber
SCANCO Medical AG

www.scanco.ch
Scanco Medical – System Classes

Specimen microCT
- < 2 µm @ 4 mm Ø
- < 50 µm @ 100 mm Ø

Preclinical microCT
- < 14 µm @ 32 mm Ø
- < 40 µm @ 80 mm Ø

Clinical microCT
- < 55 µm @ 140 mm Ø

Estimated resolution 10% MTF

ESA – When Space Meets Health – SCANCO Medical – November 2016
The EDOS Study

Thirteen spacemen scanned at radius and tibia with clinical microCT. Trabecular and cortical bone were evaluated as individual compartments.
The Main Result

Radius

Tibia

Differences in % vs preflight (mean±SE), * p<0.05 ; ** p<0.01
The Main Conclusion

- During a six month space flight
 - Weight-bearing bone site (tibia) shows high bone loss
 - Non weight-bearing bone site (radius) remained intact
- During the twelve month recovery phase
 - While weight-bearing bones (tibia) partly recover, non weight-bearing bones (radius) show pronounced bone loss
 - Hypothesis: Compensation effect (radius to tibia)?
- Clinical microCT gives new insight in space-flight related changes in bone density and microstructure
- Results might be translated to long term bed-rest patients
Acknowledgments

INSERM U1059, St-Etienne University Hospital France
Laurence Vico
Myriam Normand
Hervé Locrelle
Marie-Thérèse Linossier
Maude Gerbaix
Thierry Thomas

Eindhoven University of Technology Netherlands
Bert Van Rietbergen

SCANCO Medical AG, Brüttisellen Switzerland
Nicolas Vilayphiou

Faculty of Medicine Ibn-El-Jazzar, Sousse University Tunisia
Mohamed Zouch

Institute of Biomedical Problems, Russian Academy of Science, Moscow Russia
Galina Vassilieva
Valery Novikov

Division of Bone Diseases, Geneva University Hospital, Geneva Switzerland
Nicolas Bonnet

Charité - Universitätsmedizin Berlin Germany
Dieter Felsenberg

Funding